If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-Y^2+24Y-54
We move all terms to the left:
-(-Y^2+24Y-54)=0
We get rid of parentheses
Y^2-24Y+54=0
a = 1; b = -24; c = +54;
Δ = b2-4ac
Δ = -242-4·1·54
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-6\sqrt{10}}{2*1}=\frac{24-6\sqrt{10}}{2} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+6\sqrt{10}}{2*1}=\frac{24+6\sqrt{10}}{2} $
| x=40-17 | | 2x^{2}-3=5x | | 13g-76=28 | | (14x-13)+x=180 | | x+7x+3=13 | | 11-c=4 | | 12x-2+5x-5=180 | | k/3-17=31 | | r/7-1=1 | | x^2-0.04+26=0 | | (14x-13)-180=x | | 2(-1x-7)=6x-30 | | .4(3m+4)=2(6m+8) | | 10+3x-2=80 | | p+6p-(-8)=-6 | | 2/3x=10=-12 | | x/–8+6=4 | | (3+2)(3)=x | | ((7^(x+5))/49)=7^4x | | (14x-13)-(x)=180 | | 3x2-5x=372 | | |x-1|-3=6 | | 17x+3=18x-2 | | 17x+3=18x-2180 | | 17x+3+18x-2=180 | | 7p=5.6.p= | | x-4.35=-9.21 | | 7=x+21/2 | | 3(-10x+4)=-30x-18 | | 53+92+10x+5=180 | | 5/x+2+8/x^2-7x-18=3/x+2 | | 70+28x-2=180 |